

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

®

® ®

Open Prepress Interface (OPI)
Specification – Version 2.0

19 January 2000

PN LPS5660

Technical Note #5660

Copyright © 1984–86, 1992, 1995, 1998–99 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name

PostScript in the text are references to the PostScript language as defined by Adobe Systems

Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for

Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display

device,” or similar item refers to a printing device, display device or item (respectively) which

contains PostScript technology created or licensed by Adobe Systems Incorporated and not to

devices or items which purport to be merely compatible.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems

Incorporated. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without

notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe

Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes

no warranty of any kind (express, implied, or statutory) with respect to this publication, and

expressly disclaims any and all warranties of merchantability, fitness for particular purposes,

and noninfringement of third party rights.

19 JANUARY 2000

Contents

iii

Open Prepress Interface (OPI) Version 2.0 5

1 Introduction 5
1.1 Differences from OPI 1.3 5

1.2 Terminology 5

1.3 References 7

2 OPI 2.0 Comments 7
%%BeginOPI:2.0 7
%%Distilled(no keywords) 7
%%ImageFileName: <filename> 8
%%MainImage: <MainImageID> 8
%%TIFFASCIITag: <tagnumber> <tagtext> 9
%%ImageDimensions: <width> <height> 10
%%ImageCropRect: <left> <top> <right> <bottom> 10
%%ImageOverprint: false | true 11
%%ImageInks: <type> <number_of_inks> <name_of_ink_1> <ink_1_level>
...<name_of_ink_n> <ink_n_level> 12
<set the graphics state> 14
%%BeginIncludedImage(no keywords) 15
%%IncludedImageDimensions: <pixelswide> <pixelshigh> 15
%%IncludedImageQuality: <quality> 16
<Image Operands & Data> 17
%%EndIncludedImage(no keywords) 18
%%EndOPI(no keywords) 18

19 JANUARY 2000

iv

Contents

3 Requirements for OPI Producers 18
Color Separation Conventions 18
Prepare the graphics state 19
OPI 2.0 versus OPI 1.X 19
Composite versus separated PostScript language streams 20

4 Requirements for OPI Consumers 21
OPI 2.0 versus OPI 1.X 21
Workflow position 21
Ignore unknown comments 22
Special operators 22

5 Examples 23
5.1 Example 1 23

5.2 Example 2 24

6 Design and Usage 25
6.1 Design Requirements 25

6.2 Workflow Options 26

Option 1 26
Option 2 27

7 Reading from a named file 27

8 Change History 28

19 JANUARY 2000

5

1 Introduction

The Open Prepress Interface (OPI) is a collection of PostScript® language

conventions that allow low-resolution proxy images to be used for page layout.

The high-resolution versions of the images are automatically substituted later by

the image substitution server. Both desktop applications and electronic prepress

systems can use OPI to minimize network traffic and image storage requirements.

PostScript language files containing OPI 2.0 comments must adhere to the

Document Structuring Conventions, version 3.0 or later. See Appendix G,

“Document Structuring Conventions—Version 3.0,” in the

PostScript Language

Reference Manual, Second Edition

, or Adobe Technical Note #5001,

Document

Structuring Conventions, Version 3.0

. In this specification, the abbreviation “DSC”

is used to refer to the Document Structuring Conventions.

The Backus-Naur form (BNF) of notation, used in the DSC 3.0 document, is also

used in this specification.

1.1 Differences from OPI 1.3

OPI 2.0 introduces the need for the OPI producer to establish the graphics state.

For information on setting the graphics state, see “<set the graphics state>” on

page 14.

The other major difference from OPI 1.3 is the requirement for the comments to

appear in a specific order. Section 2, “OPI 2.0 Comments,” lists all comments in

the order in which they must appear in a document. Additional differences are list

in section 8, “Change History.”

1.2 Terminology

Bitmap

: A 1-bit deep image, typically specified using the PostScript operator

imagemask

.

Open Prepress Interface
(OPI) Version 2.0

6

Section 1: Introduction

19 JANUARY 2000

Elementary DSC data type

: An elementary or base type is a terminating

expression that does not reference any other tokens and is considered to be a base

on which other expressions are built. See Technical Note #5001, “PostScript

Language Document Structuring Conventions Specification, Version 3.0.”

Grayscale image

: A monochrome image that is deeper than 1 bit per pixel

(typically 8 bits).

Main image

: The high-resolution version of the image, as it was scanned or

otherwise acquired, from which the proxy image is created.

OPI

: for the purpose of this document, “OPI” will only refer to the PostScript

language convention associated with Adobe OPI version 1.3 and Adobe OPI

version 2.0.

OPI Producer

: An application that writes OPI comments—typically, a page

layout program such as Adobe® InDesign™ or Adobe PageMaker® Plus.

OPI Consumer

: An application that reads OPI comments and (usually) inserts

high-resolution image data into the PostScript language stream. This is typically

an image substitution server, but other prepress applications can also be OPI

Consumers.

An application can be both an OPI Producer and an OPI Consumer. OPI

Consumers should generally also be valid OPI Producers if they wish to write out

an altered PostScript language stream, since another OPI Consumer may need to

do further processing of the stream. An application should not assume that there

is no other application between it and the imagesetter or platesetter final output,

unless it is absolutely certain that no other application or RIP will post-process the

output.

OPI Server

: this term is often used to mean a server that resolves an image

substitution method. For the purposes of this document, “image substitution

server” will be used instead.

OPI context

: Everything between “%%BeginOPI: 2.0” and the matching

%%EndOPI comment, inclusive. OPI contexts may be included in EPS files that

may be incorporated into other PostScript language streams.

7

Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

PDF

:

Portable Document Format; a format that allows compact representation of

graphics and text, and which is portable across multiple platforms.

Proxy image

: The lower-resolution version of the image that is imported into a

page layout program or other OPI Producer.

1.3 References

For the following references, all Adobe Technical Note documents are available at:

< http://partners.adobe.com/asn/developer/technotes.html >

1. Portable Document Format (PDF) Reference Manual, Version 1.3.

2.

PostScript Language Reference, Third Edition

, Adobe Systems Incorporated.

3. Adobe Technical Note #5001, “PostScript Language Document Structuring

Conventions Specification, Version 3.0.” The name “Document Structuring

Conventions” is sometimes abbreviated to “DSC.”

4. Adobe Technical Note #5620, “Portable Job Ticket Format – Version 1.1.”

5. Adobe Technical Note #5044, “Color Separation Conventions for PostScript

Language Programs.”

6. TIFF Revision 6.0, Aldus Corporation, June 3, 1992.

2 OPI 2.0 Comments

The following OPI comments are listed in the order they must appear in the

file.

%%BeginOPI: 2.0

Required. Marks the beginning of an OPI 2.0 context.

%%Distilled (no keywords)

%%Distilled

 is included in the stream at this point if and only if the original

PostScript language stream was converted into a Portable Document

Format (PDF) file, and then back to a PostScript language stream.

8

Section 2: OPI 2.0 Comments

19 JANUARY 2000

An OPI Consumer should use this information to reapply color to a

colorized grayscale image, based on the OPI color comments, since the

normal automatic color application environment created by the original

OPI Producer is disabled when a PostScript code is converted into PDF, and

then back again into PostScript code.

%%ImageFileName: <filename>

Required.

%%ImageFileName:

 must be written by an OPI 2 Producer for

every image in the stream that may be the target of OPI image substitution.

This comment records the full pathname of the low-resolution proxy

image.

filename

 is an elementary DSC type.

The low-resolution proxy image is typically a TIFF or EPS file. (Some

applications require low-resolution proxy images to be TIFF files.)

%%MainImage: <MainImageID>

<MainImageID> ::= <textline>

Required if the low-resolution if the low-resolution proxy image is a TIFF

file and the ImageID TIFF tag (#32781) exists.

MainImageID

 is the full pathname of the original, high-resolution file, or

any other identifying string that uniquely identifies the main image. The

MainImageID

 string is a textline, an elementary DSC type.

Note The high-resolution image is NOT required to be in TIFF format. It can be
in any format that the OPI Consumer wishes to support, including Scitex
CT, PDF, EPS, and Quark Desktop Color Separation (DCS) files.

If the low-resolution proxy image is an EPS file instead of a TIFF file, the ID

of the main image should be stored in a

%%MainImage:

 comment in the

EPS file, typically as part of an OPI context in the EPS file.

If the %%MainImage: comment does not exist, an OPI Consumer must do

the best it can to find and link to the correct high-resolution image, using

the name given in the %%ImageFileName: comment. If the image does not

exist at the indicated location, the OPI Consumer can ask the operator to

help re-link the image or use search path rules that have been set up ahead

of time.

9

Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

%%TIFFASCIITag: <tagnumber> <tagtext>

<tagnumber> ::= <uint>(TIFF tag number, in decimal)
<tagtext> ::= <textline>(contents of TIFF field)

An OPI 2.0 Producer must write this comment if the low-resolution proxy

image is a TIFF file and if there are ASCII fields in the file. The Producer

writes a separate comment for each TIFF ASCII field.

An OPI 2.0 Producer uses this comment convention to pass TIFF ASCII

field values from the proxy image to an OPI Consumer.

tagnumber is the TIFF tag number. It is a 5-digit or less decimal number,

and is not padded with zeros or spaces.

Examples:

%%TIFFASCIITag: 270 (Sunrise from Waikiki)

%%TIFFASCIITag: 306 (1995:02:14 13:55:59)

%%TIFFASCIITag: 316 (Apple PowerMac\250 8100)

%%TIFFASCIITag: 33432 (Copyright\251, Carl Stevensen, 1995. All
rights reserved.)

%%TIFFASCIITag: 65535 (First substring.)

%%+ (Second substring.)

The value of

%%TIFFASCIITag:

 is the value of the corresponding TIFF ASCII

field. The OPI Producer must translate tagtext into textlines, an elementary

DSC data type. So, for example, the Producer must check for special

characters such as carriage return and line feed and translate them into the

correct PostScript language escape sequences (see sections G.4.6 and 3.2.2

in the

PostScript Language Reference Manual, Second Edition

). The Producer

must break comment lines longer than 255 characters into multiple lines

using the ‘

%%+

’ continuation convention.

Note that there may be more than one substring in a TIFF ASCII field. In

the TIFF file, each substring is terminated with a null (zero) byte. When

written out by the Producer, each substring after the first must start with a

separate ‘

%%+

’ comment line.

10

Section 2: OPI 2.0 Comments

19 JANUARY 2000

%%ImageDimensions: <width> <height>

<width> ::= <real>
<height> ::= <real>

%%ImageCropRect: <left> <top> <right> <bottom>

<left>::=<real>
<top>::=<real>
<right>::=<real>
<bottom>::=<real>

Optional, but if used, must be used together.

%%ImageDimensions:

 and

%%ImageCropRect:

 together specify the rectangular subset of the source

image that is to be mapped onto the unit square (and thence onto the page),

where (0,0) represents the upper left corner of the source image. See

Figure 1.

FIGURE 1

Image Cropping

If the image has not been cropped or placed inside of a frame by

the OPI Producer, then these comments are optional, and the

entire source image will be mapped onto the page.

width

 and

height

 give the dimensions of the proxy image, in pixels, for image

data, or any other convenient units such as points, for other types of

graphics. The values of

width

 and

height

 do not matter; the only

requirement is that

0

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

Image
%%ImageDimensions: 7 10

Cropping rectangle
%%ImageCropRect: 2 3 6 9

11

Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

0 <=

left

 <

right

 <=

width

, and

0 <=

top

 <

bottom

 <=

height

This information allows the OPI Consumer to improve printing

performance by including only the part of the image data that is actually

visible after the user of a page layout application has cropped it or placed it

inside a frame, thereby reducing print time.

If sending less data is not possible, then the OPI Consumer must send the

whole image, scale and translate the image such that only the cropped part

of the image is mapped to the unit square.

In OPI 2.0 , the Producer is responsible for setting up a clipping path.

Note Any clipping from a TIFF clipping path must come after the rectangular
clip path setting. Reversing the order greatly increases probability of lim-
itcheck errors due to path complexity.

Note An OPI 2.0 Consumer must not do its own clipping, or it will run a risk of
causing limitcheck errors due to a complex TIFF clipping path that may be
in effect at the time.

See Figure 1.

%%ImageOverprint: false | true

Optional. The default is

false

.

Set to

true

 if the image is to overprint underlying objects, and

false

 if the

image is to knock out underlying objects.

“Overprinting” means that any separations not included in the

%%ImageInks: list (see below) are not to be erased in the area of the image.

This could allow, for example, a black image to be printed on top of a light

blue background, without erasing the inks that make up the light blue color.

In the area of the image there may be cyan and magenta, as well as black ink.

Overprinting can be useful for avoiding trapping problems, but can

introduce unwanted colors if used indiscriminately.

“Knock out” means that any separations not included in the

%%ImageInks: list are to be erased in the area of the image. In the example

in the previous paragraph, imaging the black image would erase any inks

that make up the light blue background, so that only black ink remains in

the area of the image.

12

Section 2: OPI 2.0 Comments

19 JANUARY 2000

Note

%%ImageOverprint:

 is applicable to bitmap and grayscale images only.

%%ImageInks: <type> <number_of_inks> <name_of_ink_1> <ink_1_level>
...<name_of_ink_n> <ink_n_level>

<type>::=<monochrome | registration | full_color>
<number of inks>::=<uint>
<name of ink n>::=<text>
<ink n level>::=<real>

Optional. The default is:

%%ImageInks: monochrome 1 (Black) 1.0

for black and white and grayscale images, and

%%ImageInks: full_color

for RGB, CMYK, and CIE LAB images.

%%ImageInks:

 lists the inks that have been applied to the image, so that an

OPI Consumer that can perform color separations knows whether or not

data for this image should be included on a particular separation.

type

 can be monochrome, registration, or full_color (explained in detail

below).

number_of_inks

 is the number of inks that make up the color that has been

applied to the image.

name_of_ink_n

 is the name of the ink. This name must be a PostScript

language string, as specified in the DSC specification.

ink_n_level

 is the amount of that ink to be applied to black (e.g., deep

shadow) areas of the image. 1.0 represents full (100% dot) ink coverage, 0.0

represents none of that ink.

monochrome

For bitmap and grayscale images, use the type

monochrome

 or

registration

.

If a “spot” (i.e. “custom”) ink is applied to a monochrome image, just that

ink will be in the ink list, so that the comment would be written as:

%%ImageInks: monochrome 1 (Rose Red) 1.0

If a process color is applied to a monochrome image, then four inks make

up the color, so the comment would be written as:

%%ImageInks: monochrome 4 (Cyan) .23 (Magenta) .45 (Yellow) .10

13

Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

(Black) .02

If the image uses a single process ink, such as Black, the

%%ImageInks:

comment would list just Black:

%%ImageInks: monochrome 1 (Black) 1.0

If this Black image is to be overprinted, so that ink layers other than Black

are unaffected, be sure to write out

%%ImageOverprint: true

 before the

%%ImageInks:

 comment.

If a “hifi” (multi-ink) color is applied to a monochrome image, then there

can be any number of inks. For example, we might have:

%%ImageInks: monochrome 5 (Cyan) .10 (Magenta) .35 (Yellow) .50
(Black) .05 (Red) .60

A duotone can be created by applying two inks to a monochrome image.

For example, we might have:

%%ImageInks: monochrome 2 (Black) .50 (Sepia) .80

However, it is also generally desirable to adjust the transfer curves

differently for each ink; such manipulations are not prohibited, but are

beyond the scope of this specification.

Alternatively, a duotone, tritone, or quadtone can be specified as a multi-

channel image, in which case the appropriate

%%ImageInks:

 keyword would

be

full_color

.

Generally, an OPI 2.0 Consumer does not need to worry about applying

colors to monochrome images, since OPI 2.0 Producers must create the

appropriate color environment by defining appropriate procedures and

operators. All the OPI 2.0 Consumer needs to do is decide whether to insert

image data or not, based on whether it is doing separations or composite

printing, which separation is currently being printed, and which

separations are affected by this image.

In particular, the OPI 2.0 Consumer should use the OPIimage operator for

grayscale images. The OPI 2.0 Producer must define the OPIimage

operator so that the correct color is automatically applied to the image. For

more information on OPIimage, see section 3, “Requirements for OPI

Producers.”

The

OPIimage

 operator uses the same arguments as the standard PostScript

language image operator, either the 5-argument or dictionary form.

14

Section 2: OPI 2.0 Comments

19 JANUARY 2000

The inks listed in this comment must also be listed in the DSC comments

%%DocumentCustomColors:

or

%%DocumentProcessColors:

.

registration

If a monochrome image is to be printed on every separation, the comment

would be written as:

%%ImageInks: registration

full_color

For RGB, CMYK, and CIE LAB 3- or 4-component color images, or any

image containing more than 1 component, the

%%ImageInks:

 comment

would be:

%%ImageInks: full_color

Note A list of inks for multicomponent, “full_color” images are not specified,
since the OPI Consumer typically wants to control the process of convert-
ing deep RGB and Lab images into the appropriate CMYK or DeviceN
Color output color space for the current job.

<set the graphics state>

Required. Before

%%BeginIncludedImage

, an OPI 2.0 Producer must set up

the graphics state in such a way as to allow an OPI 2.0 Consumer to not

have to deal with color, position, or clipping paths.

An OPI 2.0 Producer must first invoke the PostScript operator

save

 or

gsave

, to allow the graphics state to be restored at the end of the OPI

context.

Note Using

save

/

restore

 has the advantage of allowing all VM used by the imag-
ing process to be recovered. In particular, the string used for buffering
image data may be quite large for wide images, and if there are multiple
images on a page, this can start consuming a significant amount of VM. On
the other hand, using save/restore increases the likelihood of hitting the
PostScript interpreter limit on the number of save/restore contexts that can
be nested. gsave/grestore has a higher limit than save/restore in most imple-
mentations, and is faster, but VM consumption could be a significant issue
if there are many large images on a single page.

In OPI 2.0 , the responsibility for image placement shifts from the

Consumer to the Producer. After the save or gsave, an OPI 2.0 Producer

must include PostScript language code that maps a unit square to the

desired position, size, and rotation on the page. The Consumer is no longer

15Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

responsible for positioning the image. This coordinate mapping technique

is a major difference between OPI 2.0 and previous versions of the OPI

specification.

PostScript language code to set the color of bitmaps and grayscale images

also goes here, as well as code to set up any clipping path that may be

associated with the image. (See the Note on page 11 about clipping paths.)

%%BeginIncludedImage(no keywords)

Required. Must be written by OPI 2.0 Producers, whether proxy data is

present or not.

%%BeginIncludedImage and %%EndIncludedImage bracket the actual

image data and the call to the appropriate image procedure.

There must be no executable code between %%BeginIncludedImage and the

last %%IncludedImageXXXX comment, %%IncludedImageQuality:.

%%IncludedImageDimensions: <pixelswide> <pixelshigh>

<pixelswide> ::= <real>
<pixelshigh> ::= <real>

Must be written by OPI 2.0 compliant Producers if image data is included

between %%BeginIncludedImage and %%EndIncludedImage.

Do not write the %%IncludedImageDimensions: comment if no image data

is included. Do not write the %%IncludedImageDimensions: comment if the

Producer does not know what the pixel dimensions are, which will generally

be the case when the proxy image is an EPS file.

pixelswide and pixelshigh give the width and height of the included image,

in pixels, before cropping.

These values are used by an OPI Consumer to determine if the image data

that is present in the PostScript language file is low-resolution—and hence

needs to be replaced with a high-resolution version—or is already high-

resolution and does not need to be replaced. This can easily be determined

by comparing the %%IncludedImageDimensions: values with the

dimensions of the high-resolution image that is about to be placed into the

PostScript language stream.

The %%IncludedImageDimensions: values may not be the same as the

%%ImageDimensions: values. For example, if a user chooses a “for position

16 Section 2: OPI 2.0 Comments

19 JANUARY 2000

only” print setting, the Producer may send only a subset of the placed image

data to the printer.

%%IncludedImageQuality: <quality>

<quality> ::= <real>

Must be written by OPI 2.0 compliant Producers if image data is included

between %%BeginIncludedImage and %%EndIncludedImage.

This is the last of the %%IncludedImageXXX comments. OPI 2.0 Consumers

can expect to find image operands and image data after this comment.

Do not write the %%IncludedImageQuality: comment if no image data is

included.

quality can have a value of 1.0, 2.0, or 3.0.

A quality value of 1.0 means that the included image data has definitely been

subsampled, so that an OPI Consumer should make every attempt to

substitute higher-resolution image data.

There are at least two conditions that should cause an OPI Producer to set

a quality value of 1.0:

(1) The OPI Producer has subsampled the version of the image that was

imported into it.

(2) The image imported by the OPI Producer is a TIFF file, the OPIProxy

tag (#351) was present in the TIFF file, and the value of the OPIProxy tag is

1. This marks the image as a low-resolution proxy image.

A quality of 2.0 means that the included image data was the highest

resolution that could be found by the OPI Producer, but a higher resolution

version may exist elsewhere. An OPI Consumer should attempt to replace

it with a higher-resolution version if possible, but not finding a higher-

resolution version may not be a fatal error.

A quality of 3.0 means that the included image data is certain to be sufficient

for final printing. An OPI Consumer should not replace the included image

data with new image data.

An OPI Consumer should be prepared to do something reasonable even if

the value for quality is something other than 1.0, 2.0, or 3.0.

17Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

<Image Operands & Data>

If image data is included, it goes here, along with a call to the desired form

of the image operator and its operands.

The image matrix must be set to [w 0 0 −h 0 h], where w and h are the width

and height of the image, in pixels. (This assumes that the visual top of the

image is the first scan line. If the visual top of the image is the last scan line,

use [w 0 0 h 0 h].) This causes the image to map itself onto the unit square.

As mentioned above, the OPI Producer must have previously set up the

appropriate transformation to map the unit square onto the correct place

on the page.

Note In contrast to the OPI 1.3 conventions, this OPI 2.0 convention makes it
unecessary for an OPI Consumer to know or care where the image goes on
the page.

If the low-resolution proxy image is an EPS file, PostScript language code to

map the EPS file to the unit square goes here, before the EPS data. Code to

map an EPS file onto the unit square might look something like:

[A 0 0 D E F] concat

where A = 1/(urx−llx), D = 1/(ury−lly), E = −llx/(urx−llx), F = −lly/(ury−lly),

and (llx,lly),(urx,ury) are the %%BoundingBox: coordinates of the EPS file.

Or, if it is preferred to think about it in two separate operations, and

remembering that the concat operator pre-multiplies the new matrix with

the CTM, the operations must be done in right-to-left order:

1/(urx−llx) 1/(ury−lly) scale

−llx −lly translate

Producers must not put anything between %%IncludedImageQuality: and

%%EndIncludedImage that is intended to apply to a replaced high-

resolution image, since everything between these two comments is removed

by an OPI Consumer.

If image data is included in the file, the data and the call to the image

operator must be surrounded by the %%Begin(End)Data comments; see

Adobe Technical Note #5001, PostScript Language Document Structuring

Conventions, Version 3.0. These comments allow the OPI Consumer to

scan quickly to the end of the image data, and not get confused by trying to

18 Section 3: Requirements for OPI Producers

19 JANUARY 2000

scan binary data. These comments must not be written if no data is

included. See section 5.1, “Example 1.”

%%EndIncludedImage (no keywords)

Required, whether proxy data is present or not.

This marks the end of the OPI 2.0 included image data.

See %%BeginIncludedImage.

%%EndOPI (no keywords)

%%EndOPI must be written by OPI 2.0 Producers.

This marks the end of the OPI 2.0 context.

(See %%BeginOPI:)

Following %%EndOPI, the OPI Producer must call the PostScript operator

restore, or grestore, to restore the interpreter state to its condition prior to

the %%BeginOPI: comment.

3 Requirements for OPI Producers
An OPI Producer can be any program that either creates a PostScript language

stream containing OPI comments, or adds or changes OPI comments in an

existing stream. The initial OPI Producer is typically a page layout or illustration

application, but it could also be an image substitution server that wishes to create

EPS proxy images using OPI 2.0 comments.

The requirements for OPI 2.0 Producers have changed significantly from OPI 1.X

requirements, to reduce the effort required to design and implement an OPI

Consumer.

The PostScript language file created by an OPI 2.0 Producer must conform to the

following requirements:

Color Separation Conventions

The color separation conventions provide guidelines for structure and content of

PostScript language files for use in color separation environments. The current

version does not require the use of PostScript LanguageLevel 2 separation

facilities.

19Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

Prepare the graphics state

An OPI 2.0 Producer must set up a number of aspects of the graphics state before

the %%BeginIncludedImage comment, so that the OPI Consumer does not have to

deal with them. In particular, the OPI 2.0 Producer must:

• Set up a clipping path around the image.

• Set up the Current Transformation Matrix (CTM) so that a unit square gets

mapped to the correct position, scale factor, skew, and rotation of the image on

the page.

• Create PostScript language instructions that will apply the correct color to a

monochrome image.

In particular, a procedure named OPIimage must be defined by an OPI 2.0

Producer. The OPIimage procedure is used by both Producer and Consumer for

all grayscale images. The parameters for OPIimage are the same as for the

standard image operator, either the 5-argument or dictionary form..

• Create PostScript language instructions to set up a clipping path for a TIFF file

that contains a clipping path. Use %ADBBeginImageClipPath and

%ADBEndImageClipPath (no arguments) to encapsulate the clipping path, since

an OPI Consumer may want to replace it with a higher-resolution version.

• Create PostScript language instructions to effect any changes made to the screen

frequency or spot function of an image.

The OPI 2.0 Consumer does not have to worry about these aspects of the graphics

state. The only obligation of the OPI Consumer is to find the high-resolution

image, decide whether the image is of a higher resolution than any image data

already in the PostScript language stream, and, if so, insert the high-resolution

image data into the PostScript language stream, replacing any lower-resolution

data, calling the OPIimage operator if the image data is grayscale.

OPI 2.0 versus OPI 1.X

It is up to the OPI Producer whether or not to write out both OPI 1.X and OPI 2.0

comments. It is possible to create a PostScript language stream that is readable by

20 Section 3: Requirements for OPI Producers

19 JANUARY 2000

both OPI 1.X and OPI 2.0 Consumers. See Example 2 below in the Examples

section.

Composite versus separated PostScript language streams

OPI was originally designed for use with composite color PostScript files.

However some prepress applications now use OPI with separated PostScript

language streams, so that they can avoid dealing with the intricacies of producing

LanguageLevel 1 separations from composite color PostScript language streams.

This can work, but there are some disadvantages to using separated streams with

OPI:

• Separated streams are device dependent.

• Separated streams are larger than composite streams, since much of the stream

is duplicated four or more times.

• A number of prepress technologies including Adobe PostScript 3™ and

Adobe Extreme™ are optimized for composite PostScript or PDF files instead of

separated streams, since a composite stream is smaller, the resulting display list

is smaller, and the output frame buffer can be created in one pass. With the

acceptance of composite files, additional functionality can be added to the RIP

stage including in-RIP Trapping, color separations, CIP3, imposition, and late-

stage editing.

It is beyond the scope of this document to try to codify and document existing

practice for producing and manipulating separated streams, but if you do attempt

to use separated files with OPI, here are a few things to watch out for:

Be sure to follow the existing de facto DSC comment convention for

“%%PlateColor: colorname,” so that the OPI consumer can know what the

current separation is. The %%PlateColor: comment generally comes right after

a %%Page: comment. For example:

...

%%Page: 1 2

%%PlateColor: Yellow

%%BeginPageSetup

21Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

...

• Use the systemdict version of the image operator, or the separationimage color

convention procedure, to image each separation of a CMYK image, since the

color conventions allow a conforming color Producer to redefine the image

operator to paint only on the Black plate.

See Section 2, “OPI 2.0 Comments” for further details on requirements for OPI

Producers.

4 Requirements for OPI Consumers
An OPI Consumer can be any of the following: an OPI-capable print server such

as the Extreme technology from Adobe, a high-end prepress workstation, or any

software package that can read OPI comments and substitute high-resolution

image data, such as Adobe InDesign or Adobe PageMaker Plus software.

OPI 2.0 Consumers have a much simpler task than in earlier versions of OPI. With

OPI 2.0 , all of the work to prepare the graphic state environment for the image is

provided by the OPI 2.0 Producer. The only remaining tasks for the Consumer are

to locate the correct high-resolution image, separate it if necessary, and insert the

image data into the PostScript language stream.

Note In some PostScript language interpreter environments, it is possible and
desirable to set up the image operator to read the image from a disk file,
without explicitly inserting the image data into the stream. See Appendix B
in this specification for more information.

OPI 2.0 versus OPI 1.X

It is up to the OPI Consumer whether or not it wants to support both OPI 1.X and

OPI 2.0 comments. Supporting only OPI 2.0 is much easier, since the OPI 2.0

Consumer can ignore all of the OPI 1.X comments.

Workflow position

It is never safe for an application to assume that it is the last one in a PostScript

workflow. If your application replaces low-resolution image data with high-

resolution image data, it is possible that another application farther downstream

will replace your high-resolution data with even higher-resolution data. So be sure

22 Section 4: Requirements for OPI Consumers

19 JANUARY 2000

to follow all the OPI rules and comment conventions when writing out a new

PostScript language file—there may be another Consumer downstream.

Ignore unknown comments

An OPI Consumer should ignore comments that it does not recognize, so that it

can continue to process documents that contain newer OPI comments. In this

way, OPI can be expanded to meet industry demands without requiring that all

OPI Consumers be immediately updated when a new revision of the specification

is released.

It is possible that enumerated values may be added to existing OPI comments at

some point in the future, so parsing software should be prepared to encounter

unexpected values and respond appropriately, usually by using the default values

for the comment. An example might be a new image data type for %%ImageInks:.

It is also possible that additional parameters may be added to the end of the

argument list of an existing comment at some point. Parsing software should be

prepared to encounter such additional parameters, and respond appropriately,

usually by ignoring the additional parameters.

Special operators

If the %%Distilled comment is not present, the OPI Consumer should call the

Producer-supplied OPIimage operator for all grayscale images. OPIimage

automatically applies the correct color to the grayscale image.

Note OPI comments can be passed through Acrobat Distiller into the PDF file by selecting the
Preserve OPI option in Distiller.

If the %%Distilled comment is present, the OPI Consumer must construct its own

procedures for applying the indicated process, spot, or multi-ink color to the

grayscale image.

Consumers of separated PostScript language streams should use the systemdict
image operator for separations of full color images. Just calling ‘image,’ without

getting it from systemdict, may not do what you expect, since it is commonly

redefined by color separation procedures.

23Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

5 Examples

5.1 Example 1

In this example a 5760x7200-pixel image has been cropped down to an 80x60-

pixel subset of the image. A reduced-resolution version, sub-sampled down by a

factor of 10, has actually been used for printing here, resulting 8x6 pixels of image

data. (This is, of course, not representative of the amount of data in most real-

world jobs.)

...application-specific PostScript language code begin a save context...

...application-specific code to set a clipping path around the image...

...application-specific code to set the color of monochrome images...

...optional application-specific code to apply changes to the lightness

 or contrast of the image...

...application-specific code to map the unit square onto the right place

 on the page, including any rotation, scale, skew, and mirror...

...optional application-specific code to set up a TIFF clipping path...

%%BeginOPI: 2.0

%%ImageFileName: (Server:Disk1:941106:Carlsen:hi-res:transistor.tif)

%%ImageDimensions: 5760.0 7200.0

%%ImageCropRect: 30.0 20.0 110.0 80.0

%%ImageInks: monochrome 1 (PANTONE 485 CV) 1.0

%%BeginIncludedImage

% This is the section, between %%BeginIncludedImage and

% %%EndIncludedImage, that an OPI 2.0 - compliant Consumer can

% replace with higher-resolution image data.

% If you replace it, don’t forget to write out new

% %%IncludedImageDimensions: and %%IncludedImageQuality: comments,

% since you might not be the last OPI Consumer in the pipeline.

%%IncludedImageDimensions: 576 720

%%IncludedImageQuality: 1.0

8 6 % width and height of actual image data, in pixels (this image

is cropped)

/_h exch def

/_w exch def

/imbuf _w 7 add 8 idiv string def

_w _h true [_w 0 0 _h neg 0 _h] {currentfile imbuf readhexstring pop}

%%BeginData: 28 Hex Bytes

imagemask

FF

81

99

99

81

24 Section 5: Examples

19 JANUARY 2000

FF

%%EndData

%%EndIncludedImage

%%EndOPI

...application-specific code to restore the save context...

5.2 Example 2

Here is a small (16x16) grayscale image.

In this example, the code is backward-compatible with OPI 1.3 comments. Please

see the OPI 1.3 specification for details on the %ALD comments.

Note This example uses PostScript language comments beginning with “% ” (percent/space) for
the purposes of commenting on the OPI comments. Such comments would not appear in
the actual PostScript file.

...start save context...

...set up default user space...

%ALDImageFileName: MyDisk:RadioArticle:lowres:photo1.tif

%ALDImageID: OPIServer:Disk1:941106:CarlsenJob:hires:photo1.tif

%ALDImageDimensions: 16 16

%ALDImageCropRect: 0 0 16 16

%ALDImagePosition: 144 648 144 720 216 720 216 648

%%BeginObject: image

%%BeginOPI: 2.0 % must immediately follow %%BeginObject:

% in a combined OPI 1.3/2.0 context

%%ImageFileName:(Server:Disk1:941106:CarlsenJob:hires:photo1.tif)

%%ImageInks: monochrome 1 (Black) 1.0

% map unit square to the correct position

%%BeginIncludedImage

%%IncludedImageDimensions: 16 16

%%IncludedImageQuality: 1.0 16 16 8 %width height bits/sample

/_bits exch def

/_h exch def

/_w exch def

/imbuf _w _bits mul 7 add 8 idiv string def

_w _h _bits [_w 0 0 _h neg 0 _h] {currentfile imbuf readhexstring

pop}

%%BeginData: 539 Hex Bytes

25Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

OPIimage

000102030405060708090A0B0C0D0E0F

101112131415161718191A1B1C1D1E1F

202122232425262728292A2B2C2D2E2F

303132333435363738393A3B3C3D3E3F

404142434445464748494A4B4C4D4E4F

505152535455565758595A5B5C5D5E5F

606162636465666768696A6B6C6D6E6F

707172737475767778797A7B7C7D7E7F

808182838485868788898A8B8C8D8E8F

909192939495969798999A9B9C9D9E9F

A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF

C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF

D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF

E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF

F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF

%%EndData

%%EndIncludedImage

%%EndOPI

%%EndObject

...restore...

6 Design and Usage

6.1 Design Requirements

OPI 2.0 was designed with the following requirements in mind:

• The design must not be tied to particular applications or operating systems.

• The design must not require a special PostScript interpreter in order to perform

high resolution image substitution. It must not require a PostScript interpreter

at all. An ordinary application program must be able to find the necessary

information and do the right thing.

26 Section 6: Design and Usage

19 JANUARY 2000

• The design must carry enough information so that an OPI Consumer can alert

users to problems such as missing high resolution images, and let them re-link

to the correct image.

• The design must support both desktop prepress software and non-desktop

prepress systems.

• The design must be as easy as possible for an OPI Consumer to implement.

• The design must support composite printing as well as pre-separated printing.

• The design must be compatible with Adobe Document Structuring

Conventions.

• The design must support LanguageLevel 1 as well as LanguageLevel 2 and 3

printers, imagesetters, and platesetters.

• The design must support black and white, grayscale, and color images in any

color space that is supported by the PostScript language. Images can either be

pre-separated into CMYK or other ink-based space, or they can be represented

in a device-independent color space and separated later in the process.

6.2 Workflow Options

Option 1

The standard way of using OPI is for a user to make a high resolution scan of an

image (stored as a TIFF file, Scitex CT image, PDF file, or any other convenient

format) on a photo editing workstation, and then make a low- or medium-

resolution version of the high-resolution image. The high-resolution image is

archived on an image substitution server. The low-resolution image is transmitted

to the person doing the page layout, where it is placed on a page in the layout

application. When the publication is finished, a PostScript language file is created

by the application, with OPI comments in place of image data. The end user takes

this PostScript language or PDF file to the image substitution server workstation

for high-resolution image substitution. Output can be sent directly to OPI-aware

spoolers, without explicitly creating a PostScript or PDF file.

27Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

Option 2

Another way of using OPI is to create the low-resolution proxy image as an EPS

file with OPI comments pointing to the high-resolution image at the image

substitution server, and send the resulting EPS file to the page layout workstation.

This has the advantage of not relying on the page layout program to create correct

OPI comments.

• There are some disadvantages to taking this approach to picture replacement:

• Such a proxy EPS/OPI file often stores several versions of the image data in order

to create the screen preview and make proof printing to black-and-white and

color printers work. Therefore, the EPS file will typically be considerably larger

and print more slowly than an equivalent TIFF file.

• Cross-platform transfer may be a problem due to platform-specific methods of

storing EPS screen previews.

• Page layout applications may not be able to assign a color to a black-and-white

or grayscale image if it is in EPS form.

• Cropping a graphic in this form does not throw away the cropped data, so that

more unused image data is sent to the printer, resulting in slower printing.

7 Reading from a named file
In some environments it may be useful to have the PostScript RIP read the data for

a high-resolution image directly from disk, using the PostScript operator file to set

up a file object.

Note The file must contain only image data, and not any executable PostScript

language code. In a LanguageLevel 2 or 3 environment, the data can be

compressed, ready to be decompressed using one of the PostScript language

decompression filters.

The only obstacle to doing this is that a page layout program may have cropped

the image, requiring corresponding cropping of the high-resolution image in

order to achieve the correct cropping, scaling, and aspect ratio.

28 Section 8: Change History

19 JANUARY 2000

There are at least two ways to overcome this obstacle. The preferred method is for

the Consumer to pre-scan the PostScript language file containing the OPI

comments, and use the OPI information to create a cropped version of the high

resolution image data before proceeding to the OPI substitution phase.

The other option for the Consumer is to use the entire image, without cropping

it, but scaling the coordinate system so that the uncropped part of the image maps

onto the unit square, while clipping to the unit square. This method is easy to

implement, but has the drawback that more image data than necessary is

processed by the imagesetter.

C code to implement the second option might look something like this:

/* (x0,y0) and (x1,y1) are opposite corners of the croprect */

A = ncols / (x1-x0);

D = nrows / (y1-y0);

E = -x0 / (x1-x0);

F = -y0 / (y1-y0);

WritePS (“[%f 0 0 %f %f %f] concat\n”, A,D,E,F);

Warning: an OPI Consumer must not read directly from a named disk file unless

it is sure that it is the either the last program in the prepress pipeline, or that at

least the file system known to the RIP is static. Otherwise the RIP will not be able

to find the image data.

8 Change History
The following section details changes made to the OPI specification since

version 1.3.

Changes from Version 1.3 to Version 2.0

• The work of an OPI Consumer has been greatly simplified, due to new

conventions to isolate the setting of image characteristics from the image data

itself. To facilitate this transition, new %% OPI comments have been

introduced. The old %ALD comments are typically ignored by an OPI 2.0

Consumer if OPI 2.0 comments are present. %ALD comments are no longer

described in this document.

• The examples have been updated to use the new comments.

29Open Prepress Interface (OPI) Version 2.0

19 JANUARY 2000

• A number of sections have been clarified, rewritten, or reorganized.

• Guidelines for supporting EPS proxy and high resolution images and PDF main

image were added.

• The syntax for filenames and ASCII fields was clarified and made consistent

with DSC syntax.

• The document was reformatted to be visually compatible with Appendix G:

Document Structuring Conventions—Version 3.0, in the PostScript Language

Reference Manual, Second Edition.

30 Section 8: Change History

19 JANUARY 2000

	Open Prepress Interface (OPI) Version 2.0
	1 Introduction
	1.1 Differences from OPI 1.3
	1.2 Terminology
	1.3 References
	2 OPI 2.0 Comments
	%%BeginOPI: 2.0
	%%Distilled (no keywords)
	%%ImageFileName: <filename>
	%%MainImage: <MainImageID>
	%%TIFFASCIITag: <tagnumber> <tagtext>
	%%ImageDimensions: <width> <height>
	%%ImageCropRect: <left> <top> <right> <bottom>
	%%ImageOverprint: false | true
	%%ImageInks: <type> <number_of_inks> <name_of_ink_1> <ink_1_level> ...<name_of_ink_n> <ink_n_level>
	<set the graphics state>
	%%BeginIncludedImage (no keywords)
	%%IncludedImageDimensions: <pixelswide> <pixelshigh>
	%%IncludedImageQuality: <quality>
	<Image Operands & Data>
	%%EndIncludedImage (no keywords)
	%%EndOPI (no keywords)

	3 Requirements for OPI Producers
	Color Separation Conventions
	Prepare the graphics state
	OPI 2.0 versus OPI 1.X
	Composite versus separated PostScript language streams
	4 Requirements for OPI Consumers
	OPI 2.0 versus OPI 1.X
	Workflow position
	Ignore unknown comments
	Special operators
	5 Examples
	5.1 Example 1
	5.2 Example 2
	6 Design and Usage
	6.1 Design Requirements
	6.2 Workflow Options
	Option 1
	Option 2
	7 Reading from a named file
	8 Change History

